Вода – это фактор, который напрямую влияет на качество жизни человека. От ее цвета и запаха зависит настроение человека утром после умывания, а от состава – самочувствие и здоровье организма.
Вода, являясь основой жизни, легко распространяет инфекционные заболевания. Чтобы предотвратить передачу болезнетворных микроорганизмов через питьевую воду, применяют обеззараживание и дезинфекцию жидкости. Эти процессы позволяют уничтожить грибки, бактерии, неприятный привкус и цвет, что обеспечивает безопасность питьевой воды.
Очистка и обеззараживание питьевой воды для подачи в жилые дома проводится на станциях водоподготовки централизованного водоснабжения. Также существуют методы и установки для локального использования – в виде небольших систем очистки воды из скважины или способов, позволяющих очищать воду, набранную в бутылку.
Классификация методов обеззараживания воды
Чтобы правильно выбрать способ обеззараживания, проводят анализ загрязненной воды. Исследуется количество и вид микроорганизмов, степень побочной загрязненности. Также определяется объем воды, которая будет проходить очистку, и экономический фактор.
Вода, прошедшая очистку, прозрачна и бесцветна, не пахнет и не имеет вкуса и привкуса. Чтобы добиться такого эффекта, применяют следующие группы методов:
- физические;
- химические;
- комбинированные.
Каждой группе присущи свои отличительные признаки, но все методы так или иначе позволяют удалить патогенные микроорганизмы из воды. Получить подробную информацию по оборудованию для очистки и обеззараживания воды можно в компании «КВАНТА+» в г. Тюмень.
Химический метод – это работа с реагентами, добавляемыми в воду. Физическое обеззараживание выполняется за счет температуры или различных излучений. Комбинированные методы сочетают работу этих двух групп.
Наиболее эффективные способы
Инфекционная безопасность воды – это важная и актуальная проблема, из-за чего изобретено множество методик для избавления воды от микроорганизмов. Способы дезинфекции не прекращают улучшаться. Они становятся более результативными и доступными. В наше время самыми лучшими считаются следующие методы:
- термообработка с помощью высоких температур;
- озонирование;
- ультразвуковая обработка;
- реагентные методы;
- ультрафиолетовое облучение жидкости;
- высокомощные электрических разрядов.
Физические методы обеззараживания воды
Перед ними вода обязательно должна проходить очистку от взвесей и примесей. Для этого применяется коагуляция, сорбция, флотация и фильтрация.
К данному виду методов относится применение:
- ультразвука;
- ультрафиолета;
- высоких температур;
- электричества.
Обеззараживание ультрафиолетом
Дезинфицирующее действие ультрафиолетового излучения известно очень давно. Его работа сходна с солнечным светом, успешно уничтожающим неприспособленные микроорганизмы за пределами озонового слоя Земли. Ультрафиолет воздействует на клетки, создавая поперечные сшивки в ДНК, вследствие чего клетка теряет возможность делиться и погибает (Рис. 2).
Установка состоит из ламп, помещенных в кварцевые чехлы. Лампы производят изучение, мгновенно уничтожающее микроорганизмы, а чехлы не позволяют лампам остывать. Качество обеззараживания при использовании этого метода зависит от прозрачности воды: чем чище поступающая жидкость, тем дальше распространяется свет и тем меньше загрязняется лампа. Для этого перед обеззараживанием вода проходит другие стадии очистки, в том числе механические фильтры.Резервуар, через который протекает вода, обычно оборудован мешалкой. Перемешивание слоев жидкости позволяет процессу дезинфекции проходить более равномерно.
Конструкция установки УФ-обеззараживания
Важно знать, что лампы и чехлы требуют регулярного ухода: конструкцию необходимо разбирать и очищать не менее одного раза в квартал.
Тогда результативность процесса не будет ухудшаться из-за появления накипи и других загрязнений. Сами лампы подлежат замене раз в год.
Установки ультразвукового обеззараживания
Работа таких установок основана на кавитации. Из-за интенсивных колебаний, которым подвергается вода благодаря высокочастотному звуку, в жидкости образуются многочисленные пустоты, она будто «вскипает». Мгновенный перепад давлений приводит к разрыву клеточных оболочек и гибели микроорганизмов.
Оборудование для ультразвуковой обработки воды эффективно, но требует больших затрат и грамотной эксплуатации. Важно, чтобы персонал умел обращаться с устройством – от качества настройки оборудования зависит его результативность.
Термическое обеззараживание
Этот метод крайне распространен среди населения и активно применяется в быту. С помощью высокой температуры, то есть кипячения, вода очищается практически от всех возможных патогенных организмов.
В дополнение к этому снижается жесткость воды и уменьшается содержание растворенных газов. Вкусовые качества воды остаются прежними.
Однако, у кипячения есть один недостаток: вода считается безопасной около суток, после чего бактерии и вирусы вновь могут в ней обосноваться.
Кипячение воды – надежный и простой метод обеззараживания
Электроимпульсное обеззараживание
Методика заключается в следующем: электрические разряды, поступающие в воду, создают ударную волну, микроорганизмы попадают под гидравлический удар и погибают.
Этот способ не требует предварительной очистки и эффективен даже при повышенной мутности. Гибнут не только вегетативные, но и спорообразующие бактерии.
Преимуществом является длительное сохранение эффекта (вплоть до 4-х месяцев), а недостатком – немалая стоимость и большое энергопотребление.
Химические методы обеззараживания воды
Они основаны на химических реакциях, которые происходят между загрязнением или микроорганизмом и добавляемым в жидкость реагентом.
При химическом обеззараживании важно контролировать дозу реагента.
Она должна быть точной. Недостаток вещества не сможет исполнить свою цель. К тому же, небольшое количество реагента приведет к повышенной активности вирусов и бактерий.
Чтобы улучшить работу химиката, его добавляют с избытком. В таком случае вредоносные микроорганизмы погибают, а эффект сохраняется продолжительное время. Избыток рассчитывается отдельно: если добавить слишком много, реагент дойдет до потребителя, и он отравится.
Хлорирование
Хлор широко распространен и применяется в водоочистке многих стран мира. Он успешно справляется с любыми объемами микробиологических загрязнений.
Хлорирование приводит к гибели большей части патогенных организмов и отличается дешевизной и доступностью. К тому же, использование хлора и его соединений позволяет извлекать из воды металлы и сероводород.
Хлорирование применяется в городских системах подачи питьевой воды. Оно также используется в бассейнах, где скапливается большое число людей.
Однако, у этого способа есть ряд недостатков. Хлор крайне опасен, вызывает рак и клеточные мутации, токсичен. Если избыток хлора не исчезнет в трубопроводе, а дойдет до населения, это может привести к серьезным проблемам со здоровьем. Особенно сильна опасность в переходные периоды (осень и весну), когда из-за увеличения загрязненности поверхностных вод повышают дозу реагента при водоподготовке. Кипячение такой воды не поможет избежать негативных последствий, а наоборот – хлор превратится в диоксин, являющийся сильнейшим ядом. Для того, чтобы дать излишку хлора испариться, воду из-под крана набирают в большие емкости и оставляют на сутки в хорошо проветриваемом помещении.
Озонирование
Озон обладает сильным окисляющим воздействием. Он проникает внутрь клетки и разрушает ее стенки, приводя к гибели бактерии. Это вещество не только является сильным антисептиком, но также обесцвечивает и дезодорирует воду, окисляет металлы. Озон работает быстро и избавляется практически от всех микроорганизмов, находящихся в воде, обгоняя по этой характеристике хлор.
Озонирование считается наиболее безопасным и эффективным методом, но и оно имеет несколько минусов. Избыток озона приводит к коррозии металлических частей оборудования и трубопроводов, аппараты изнашиваются и разрушаются быстрее обычного. Кроме того, новейшие исследования отмечают, что озонирование вызывает «пробуждение» микроорганизмов, находившихся в условной спячке.
Схема процесса озонирования
Способ отличается дороговизной установки и большим энергопотреблением. Для работы с озонирующим оборудованием требуется персонал высокой квалификации, ведь газ токсичен и взрывоопасен. Чтобы пустить воду населению, необходимо переждать период распада озона, иначе могут пострадать люди.
Обеззараживание полимерными соединениями
Отсутствие вреда здоровью, уничтожение запахов, вкусов и цветности, большая длительность действия – перечисленные достоинства относятся к обеззараживанию с помощью полимерных реагентов. Такой вид веществ также называют полимерными антисептиками. Они не вызывают коррозию и не портят ткань, не вызывают аллергии и отличаются результативностью.
Олигодинамия
Она основана на способности благородных металлов (таких как золото, серебро и медь) обеззараживать воду.
То, что эти металлы имеют антисептический эффект, известно давно. Медь и её сплавы часто применяют в полевых условиях, когда нужно в индивидуальном порядке обеззаразить небольшой объем жидкости.
Для более обширного воздействия металлов на микроорганизмы используются ионаторы. Это проточные аппараты, работающие на основе гальванической пары и электрофореза.
Обеззараживание серебром
Этот металл принято считать одним из самых древних способов обеззараживания воды. В древности было распространено мнение, что серебро лечит от любых болезней. Сейчас известно, что оно негативно влияет на множество микроорганизмов, однако неизвестно, уничтожает ли серебро простейшие бактерии.
Данное средство дает видимый эффект при очистке воды. Однако оно негативно влияет на организм человека при накоплении в нем. Не зря серебро имеет высокий класс опасности. Обеззараживание воды ионами серебра не считается безопасным методом, а потому практически не используется в промышленности. Серебряные ионаторы используются в единичных случаях в быту для обработки небольших объемов воды.
Компактный бытовой ионатор (осеребритель) воды
Иодирование и бромирование
Йод широко известен и используется в медицине с давних времен. Ученые многократно пытались использовать его обеззараживающее воздействие в водоочистке, однако его применение приводит к возникновению неприятного запаха.
Бром отлично справляется практически со всеми известными патогенными микроорганизмами. Но имеет существенный недостаток – высокую стоимость. Из-за своих минусов эти два вещества для обработки сточных и питьевых вод не используются.
Комбинированные методы обеззараживания воды
Комплексные методы основываются на сочетании физических и химических методов для улучшения результативности. Примером является комбинация из ультрафиолетового излучения и хлорирования (иногда хлорирование заменяется на озонирование).
УФ-лампы уничтожают микроорганизмы, а хлор или озон предотвращают их повторное возникновение. Кроме того, хорошо сочетаются окисление и обработка тяжелыми металлами. Реагент-окислитель дезинфицирует, а металлы продлевают бактерицидное действие.
Сочетание УФ-обеззараживания и действия ультразвука
Как обеззаразить воду в быту
Существует пять способов быстро продезинфицировать небольшой объем воды:
- кипячение;
- добавление перманганата калия;
- использование обеззараживающих таблеток;
- использование трав и цветов;
- настаивание с кремнием.
Перманганат калия прибавляется воду в количестве 1-2 г. на одно ведро воды, после чего загрязнения выпадают в осадок.
Специальные таблетки для уничтожения микроорганизмов применяются при обезвреживании воды из скважины, колодца или родника. Они являются наиболее современным способом, доступным, недорогим и результативным. Многие таблетки, например, марки «Акватабс», могут использоваться для очистки больших объемов жидкости.
Если воду необходимо обеззаразить в походе, можно воспользоваться специальными травами: зверобоем, брусникой, ромашкой или чистотелом.
Также можно использовать кремний: его помещают в воду и оставляют на сутки.
Нормативная документация в области безопасности питьевой воды
Со стороны государства качество воды строго контролируется с помощью нормативных документов, правил и ограничений. Основой законодательных актов в области охраны водных ресурсов и контроля качества используемой воды являются два документа: Федеральный закон «О санитарно-эпидемиологическом благополучии населения» и Водный кодекс.
Первый закон содержит требования к качеству источников водоснабжения, из которых вода поступает в жилые дома и на нужды сельского хозяйства. Второй документ описывает нормы использования водных источников и указания по обеспечению их безопасности, а также определяет меры наказания.
ГОСТы
ГОСТы описывают правила, по которым должен проходить контроль качества сточных и питьевых вод. В них содержатся методики проведения анализов в полевых условиях, а также позволяют разделить воды на группы. Самые важные из ГОСТов представлены в таблице.
СНиПы
Современные способы и методы очистки воды
Главная › Очистка
Системы водочистки являются неотъемлемой частью современной жизни и практически все потребители (от частных лиц до предприятий) нуждаются в качественной и правильно подготовленной воде.
Реализованные в них методы и технологии бывают разными, с особенностями каждого варианта стоит познакомиться заранее.
В зависимости от принципа действия выделяют такие способы очистки воды как:
- Физические (грубая механическая чистка).
- Химические (смешение воды с реагентами).
- Физико-химические (сложные комплексные мероприятия).
- Биологические (воздействие живых микроорганизмов).
Физические методы
Они успешно задействуются на этапах первичной и грубой очистки и в разы реже – при глубоких и тонких воздействиях.
Среди главных физических методов выделяют:
- Процеживание – очищение жидкостей от крупнофракционных посторонних включений при проходе через ячеистые прослойки (сетки, решетки, полипропиленовую мешковину). К преимуществам этого метода относят простоту и эффективное улавливание крупного мусора, к минусам – потребность в частой промывке фильтрующих элементов, пропускание патогенных микроорганизмов, солей и любых мелких нежелательных примесей.
- Отстаивание – осаждение посторонних фракций под действием собственного веса вниз с последующим отбором более чистой воды. Этот метод используются как на предварительных, так и на промежуточных этапах водоподготовки, его производительность существенно ограничена временем и объемами отстойников.
- Фильтрование – схожий с процеживанием, но более совершенный метод, позволяющий очищать воду от ненужных примесей с разным размером фракций (минимальный порог – до микронов) при прохождении через пористый фильтрующий слой. Метод активно используется в быту и на производстве, из всех физических видов он считается самым эффективным.
- УФ-дезинфекция – обработка предварительно очищенной от крупных фракций воды УФ-лучами с длиной волн в пределах 200-400 нм с целью обеззараживания. Состав и физические свойства жидкости этот метод не меняет.
Химические
Эти методы ценятся за эффективность и высокую производительность.
Справка. Разложение, преобразование или выпадение в осадок загрязнителей при их применении происходит в кратчайшие сроки вне зависимости от объема обработки.
Исходя из вида протекающих реакций выделяют такие химические методы водоочистки как:
- Нейтрализация – выравнивание PH-баланса воды за счет добавления особых реагентов (аммиачной воды, гидроксидов калия или натрия, кальцированной соды) или ее пропускании через кислые газы. Чаще всего к этому методу обращаются при регенерации промышленных стоков, забираемая из скважин или водоемов вода изначально имеет нейтральную среду и корректировке баланса не нуждается.
- Окисление – обезвреживание токсичных водных растворов и хлорирование воды при добавлении активных окислителей. Несмотря на высокую эффективность (микроорганизмы убиваются быстро и надолго) метод считается опасным для здоровья человека.
- Очистку восстановлением. Данный метод выбирается при высокой доли легко восстанавливаемых веществ в исходной воде или стоках. При его выборе из воды удаляются ряд простых и переходных металлов и минералов (хрома, ртути или мышьяка) и их соединений.
Физико-химические
Очистка воды при их выборе осуществляется самыми разными способами, включая воздействие растворенных газов, тонкодисперсных сред и изменение ионного состояния молекул.
Особенности наиболее востребованных физико-химических методов изложены в таблице:
Наименование | Кратное описание метода | Оптимальное применение/ возможные ограничения |
Флотация | Отделение и подъем твердых гидрофобных частиц при пропускании сквозь толщу воды пузырьков воздуха или других инертных газов. Формируемая на поверхности пена или прослойка легко удаляется механическими способами. | Очистка жидкостей от нефтепродуктов и масел, удаление твердых примесей при низкой эффективности других методов. |
Сорбация | Избирательная фильтрация ненужных примесей при поверхностном или объемном прохождении воды через материалы с пористой структурой (силикагели, уголь и их аналоги). Используемые сорбенты могут быть восстанавливаемыми или утилизируемыми после потери фильтрационных свойств. | Удаление ПАВ, пестицидов, фенолов, процессы доочистки. |
Экстракция | Заливка в очищаемую воду мало- или несмешиваемых веществ, растворяющих грязь, с последующим активным перемешиванием, отстаиванием и разделением разнофазных сред. | Удаление органический соединений, включая фенолы, регенерация стоков. |
Ионообмен | Обмен ионами между очищаемой водой и природными (цеолиты, сульфоугли) или искусственными (синтетические смолы) ионитами. | Умягчение воды/ метод не предназначен для бытовой очистки больших объемов сильнозагрязненной воды. |
Электродиализ | Очищаемая вода последовательно проходит камеры с ионоселективными мембранами и электродами постоянного тока. В первых камерах вода избирательно обессоливается, в крайних – накапливает концентрат солей с последующим разделением. | Обессоливание и удаление нежелательных ионов. Регенерация стоков на химических предприятиях. |
Обратный осмос | Вода пропускается через мембраны с микроскопическими ячейками под избыточным гидростатическим давлением с последующей утилизацией выделенного загрязненного раствора. | Обессоливание, отделение нежелательных микроорганизмов, растворенных газов и коллоидных веществ. |
Термические методы | Суть данных метолов состоит в получении дистиллята или максимально очищенной воды после ее выпаривания, вымораживания или термического окисления (распыление и пропускание через высокотемпературные продукты сгорания). | Нейтрализация или удаление токсичных или слабо разлагающихся примесей. |
Биологические
Эти методы преимущественно задействуются при очищении стоковых вод и базируются на использовании живых организмов.
К последним относят как бактерии (окисляющие и разрушающие токсичные и азотосодержащие соединения, поглощающие фосфаты), простейшие грибы и водоросли, так и многоклеточные (черви, насекомые).
Справка. Чаще всего бактерии используют в виде активного жилого ила и зооглеей.
Водоочистка биологическими методами проводится в:
- Естественных или искусственных водоемах, очищающих сравнительно небольшие объемы воды со средней степенью загрязненности при минимуме усилий и трат.
- Биофильтрах – специальных сооружениях с фильтрующей прослойкой из аэробных микроорганизмов с естественным или принудительным воздухообменом.
- Аэротенках – сложных автоматизированных комплексах с принудительной аэрацией.
- Метатенках – устройствах анаэробного брожения для переработки концентрированных стоковых осадков.
Современные технологии очищения
В современных системах водоподготовки приведенные методы используются в комплексе.
Ярким примером служат многоступенчатые бытовые фильтры с механическими предфильтрами, ионообменными или сорбционными картриджами и обратноосмотическими мембранами. Такие установки обеспечивают полноценную подготовку питьевой воды вне зависимости от ее исходных параметров.
К инновационным тенденциям в сфере водоподготовки относят:
- Отказ от метода хлорирования в пользу озонирования (окисление жидким кислородом) и/или УФ-обработки.
- Использование ультрафильтров и нанофильтрационных мембран с пониженной селективностью.
- Вывод взвесей и растворенных органических примесей с помощью электроприборов фотокатализации.
При всех своих преимуществах такие технологии нельзя назвать бюджетными, соответствующие фильтры, мембраны и другие расходные материалы обходятся дорого и в быту не окупаются.
Проверенные новые методы (ионообмен, обратный осмос, многоступенчатое исполнение фильтра), наоборот, становятся более доступными для частных лиц.
Фильтрация на предприятиях
Взаимосвязь между областью использования и требуемым типом системы водоподготовки отражена в таблице:
Отрасль производства | Требуемые функции основной линии подготовки |
Металлургия | Обессоливание |
Пищевая промышленность | Обеспечение ионного обмена, обеззараживание, умягчение |
Добыча и переработка нефти и газа | Исключение посторонних примесей, обезжелезивание, обратный осмос |
Энерго- и тепло- и водоснабжение | Обессоливание, УФ-фильтрация, хлорирование или озонирование |
Фармацевтика | Обратный осмос, дистилляция |
В целях экономии средств приведенные методы реализуются в комплексе с механическим фильтрованием.
Отдельные требования выдвигаются к системам переработки стоков предприятий химической или металлургической отрасли, отбираемый концентрат может быть ценным или нуждаться в обязательной утилизации.
Переработка стоков
Полный цикл переработки стоков на производстве и в общественных линиях включает:
- Подачу стоков на усреднитель при необходимости разбавления.
- Отстаивание механическим способом.
- Основную чистку (активное использование живых организмов).
- Глубокую чистку (удаление всех посторонних примесей с помощью обратноосмотических мембран или тонких фильтров).
- Обеззараживание (УФ-обработка, хлорирование, озонирование).
Выделяемый на 2, 3 и 4 стадиях осадок в обязательном порядке регенерируется или утилизируется. Эти процессы происходят в метатенках, отжимных или сушильных аппаратах.
К дорогостоящим физико-химическим методам прибегают лишь при повышенных требованиях к чистоте состава или при низкой результативности других способов.
Бытовое очищение стоков требует меньше усилий. Владельцы индивидуальных домов, но подключенных к канализационным сетям используют септики (как с днищем, так и без), сорбенты или коагулянты.
Важно! Вторичное использование очищенных стоков практикуется редко (при соблюдении ряда условий вода может направляться в системы полива).
Более подробно об очистке сточных вод читайте здесь.
Удаление тяжелых металлов
Потребность в принятии дополнительных мер возникает при отклонении ПДК тяжелых металлов в воде от санитарно-гигиенически норм. Чаще всего такая ситуация наблюдается при близости скважины к септику или попадании этих веществ извне (осадки, протекание зараженных грунтовых вод, контакт с металлически фитингами).
Для удаления этих веществ в быту и промышленности используются следующие химические и физико-химические методы:
Тип металла | Допустимая концентрация в воде, не более мг/л | Рекомендуемый метод очистки воды |
Марганец и железо | 0,1 | Ионообмен, аэрация с последующей подачей в засыпной фильтр с каталитическим зарядом, окисление гипохлоритом натрия, дозированная подача сильнодействующих окислителей |
Сероводород | 0,01, вещество очень токсично | Окисление, выветривание, насыщение кислородом |
Свинец | 0,03 | Обратный осмос, окисление и восстановление |
Ртуть | 0,001 | Обратный осмос, а также окисление и восстановление |
Хром | 0,05 | Окисление, обратный осмос и восстановление |
Никель | 0,1 | Окисление и восстановление |
Системы обратного осмоса при несомненной эффективности редко используются из-за дороговизны и ускоренного использования ресурсов мембран.
Важно! Рекомендуется выбрать систему обратного осмоса при очищении воды с высоким (от 20 мг/л) содержанием двухвалентного железа или невозможности использования других способов.
Заключение
- Приведенные методы непрерывно совершенствуются и дополняют друг друга, при выборе конкретного варианта стоит ознакомиться с их особенностями и возможными ограничениями заранее.
- Ни один из методов, который существует, нельзя назвать универсальным, при правильной организации водоподготовки они задействуются в комплексе.
- Вне зависимости от выбранного метода к потребителю или на промышленные объекты подается вода с контролируемыми параметрами.
А какова Ваша оценка данной статье? Загрузка…
Методы и способы очистки воды
Как следует из названия, методы очистки воды данной группы совмещают в себе химическое и физическое воздействие на загрязнители воды. Они достаточно разнообразны и применяются для удаления самых разных веществ.
В их числе растворенные газы, тонкодисперсные жидкие или твердые частицы, ионы тяжелых металлов, а также различные вещества в растворенном состоянии.
Физико-химические методы могут применяться как на стадии предварительной очистки, так и на поздних этапах для глубокой очистки.
Разнообразие методов данной группы велико, поэтому ниже будут приведены наиболее распространенные из них:
- флотация;
- сорбция;
- экстракция;
- ионообмен;
- электродиализ;
- обратный осмос;
- термические методы.
Флотация, применительно к водоочистке, представляет собой процесс отделения гидрофобных частиц при пропускании через воду большого числа пузырьков газа (обычно воздуха).
Показатели смачиваемости отделяемого загрязнителя таковы, что частицы закрепляются на поверхности раздела фаз пузырьков и вместе с ними поднимаются на поверхность, где образуют слой пены, который может быть легок удален.
Если отделяемая частица оказывается больше по размерам чем пузырьки, то вместе они (частица + пузырьки) образуют так называемый флотокомплекс.
Нередко флотацию комбинируют с использованием химических реагентов, к примеру, сорбирующихся на частицах загрязнителя, чем достигается снижение его смачиваемости, или являющихся коагулянтами и проводящих к укрупнению удаляемых частиц. Флотацию преимущественно используют для очистки воды от различных нефтепродуктов и масел, но также могут удаляться твердые примеси, отделение которых другими способами неэффективно.
Существуют различные вариант осуществления процесса флотации, ввиду чего выделяют следующие ее типы:
- пенная;
- напорная;
- механическая:
- пневматическая;
- электрическая;
- химическая и т.д.
Приведем в качестве примера принцип работы некоторых из них. Широко используется метод пневматической флотации, при которой образование восходящего потока пузырьков создается за счет установки на дне резервуара аэраторов, обычно представляющих собой перфорированные трубы или пластины.
Подаваемый под давлением воздух проходит сквозь отверстия перфорации, за счет чего дробиться на отдельные пузырьки, осуществляющие сам процесс флотации.
При напорной флотации поток очищаемой воды смешивается с потоком воды, перенасыщенной газом и находящейся под давлением, и подается в камеру флотации. При резком падении давления растворенный в воде газ начинает выделяться в виде пузырьков малого размера.
В случае электрофлотации процесс образования пузырьков протекает на поверхности расположенных в очищаемой воде электродов при протекании по ним электрического тока.
Сорбционные методы основаны на избирательном поглощении загрязняющих веществ в поверхностном слое сорбента (адсорбция) или в его объеме (абсорбция). В частности для очистки воды используется процесс адсорбции, который может носить физический и химический характер.
Отличие заключается в способе удержания адсорбируемого загрязнителя: с помощью сил молекулярного взаимодействия (физическая адсорбция) или благодаря образованию химических связей (химическая адсорбция или хемосорбция).
Методы данной группы способны достичь большой эффективности и убирать из воды даже малые концентрации загрязнителей при больших ее расходах, что делает их предпочтительными в качестве методов доочистки на завершающих стадиях процесса водоочистки и водоподготовки.
Сорбционными методами могут удаляться различные гербициды и пестициды, фенолы, поверхностно активные вещества и т.д.
В качестве адсорбентов используются такие вещества как активированные угли, силикагели, алюмогели и цеолиты. Их структура делается пористой, что значительно увеличивает удельную площадь адсорбента, приходящуюся на единицу его объема, из-за чего достигается большая эффективность процесса.
Сам процесс адсорбционной очистки может быть осуществлен путем смешения очищаемой воды и адсорбента, или же путем фильтрации воды через слой адсорбента.
В зависимости от сорбирующего материала и извлекаемого загрязнителя процесс может быть регенеративным (адсорбент после регенерации используется вновь) или деструктивны, когда адсорбент подлежит утилизации ввиду невозможности его регенерации.
Очистка воды методом жидкостной экстракции заключается в использовании экстрагентов. Применительно к очистке воды, эктсрагент – это несмешиваемая или мало смешиваемая с водой жидкость, значительно лучше растворяющая в себе извлекаемые из воды загрязнители.
Процесс осуществляется следующим образом: очищаемая вода и эктрагент перемешиваются для развития большой поверхности контакта фаз, после чего в них происходит перераспределение растворенных загрязняющих веществ, большая часть которых переходит в экстрагент, затем две фазы разделяются.
Насыщенный извлекаемыми загрязнителями экстрагент называется экстрактом, а очищенная вода – рафинатом. Далее экстрагент может быть утилизирован или регенерирован в зависимости от условий процесса.
Данным методом из воды удаляются преимущественно органические соединения, такие как фенолы и органические кислоты. Если экстрагируемое вещество представляет определенную ценность, то после регенерации экстрагента оно вместо утилизации может быть с пользой использовано для других целей.
Данный факт способствует применению экстракционного метода очистки к сточным водам предприятий для извлечения и последующего использования или возврата в производство ряда веществ, теряемых со стоками.
Ионный обмен в основном используется в водоподготовке с целью умягчения воды, то есть изъятия солей жесткости. Суть процесса заключается в обмене ионами между водой и специальным материалом, называемым ионитом. Иониты подразделяются на катиониты и аниониты в зависимости от типа обмениваемых ионов.
С химической точки зрения ионит представляет собой высокомолекулярное вещество, состоящее из каркаса (матрицы) с большим количеством функциональных групп, способных к ионообмену.
Существуют природные иониты, такие как цеолиты и сульфоугли, которые применялись на ранних этапах развития ионообменной очистки, но в настоящее время широкое распространение получили искусственные ионообменные смолы, значительно превосходящие свои природные аналоги по ионообменной способности.
Метод очистки ионным обменом получил широкое распространение, как в промышленности, так и в быту.
Бытовые ионообменные фильтры, как правило, не используются для работы с сильнозагрязненными водами, поэтому ресурса одного фильтра хватает на очистку большого количества воды, после чего фильтр подлежит утилизации. В то же время при водоподготовке ионообменный материал чаще всего подлежит регенерации с помощью растворов с большим содержанием ионов H+ или OH—.
Электродиализ представляет собой комплексный метод, сочетающий мембранный и электрический процессы. С его помощью можно удалять из воды различные ионы и проводить обессоливание. В отличие от обычных мембранных процессов, в электродиализе используются специальные ионоселективные мембраны, пропускающие ионы только определенного знака.
Аппарат для проведения электродиализа называется электродиализатором и представляет собой ряд камер, разделенных чередующимися катионообменными и анионообменными мембранами, в которые поступает очищаемая вода. В крайних камерах расположены электроды, к которым подводится постоянный ток.
Под действием возникшего электрического поля ионы начинаются двигаться к электродам согласно своему заряду, пока не встречают ионоселективную мембрану с совпадающим зарядом. Это приводит к тому, что в одних камерах происходит постоянный отток ионов (камеры обессоливания), а в других, наоборот, наблюдается их накопление (камера концентрирования).
Разводя потоки из разных камер можно получить концентрированный и обессоленный растворы. Неоспоримые преимущества данного метода заключаются не только в очищении воды от ионов, но и в получении концентрированных растворов отделяемого вещества, что позволяет возвращать его назад в производство.
Это делает электродиализ особенно востребованным на различных химических предприятиях, где вместе со стоками теряется часть ценных компонентов, и применение данного метода удешевляется за счет получения концентрата.
Дополнительная информация по электродиализу
Обратный осмос относится к мембранным процессам и проводится под давлением больше осмотического.
Осмотическое давление – избыточное гидростатическое давление, приложенное к раствору, отделенному полупроницаемой перегородкой (мембраной) от чистого растворителя, при котором прекращается диффузия чистого растворителя через мембрану в раствор.
Соответственно, при рабочем давлении выше осмотического будет наблюдаться обратный переход растворителя из раствора, за счет чего концентрация растворенного вещества будет расти.
Таким способом можно отделять растворенные газы, соли (включая соли жесткости), коллоидные частицы, а также бактерии и вирусы. Также установки обратного осмоса выделяются тем, что используются для получения пресной воды из морской. Данный тип очистки с успехом используется как в бытовых условиях, так и при обработке сточных вод и водоподготовке.
Дополнительная информация по обратному осмосу и системам обратного осмоса
Термические методы основаны на воздействии на очищаемую воду повышенных или пониженных температур. Одним из наиболее энергоемких процессов является выпаривание, однако оно позволяет получить воду высокой степени чистоты и высококонцентрированный раствор с нелетучими загрязнителями.
Также концентрирование примесей может осуществляться с помощью вымораживания, поскольку в первую очередь начинает кристаллизоваться чистая вода, и лишь затем оставшаяся ее часть с растворенными загрязнителями.
Выпариванием, как и вымораживанием, можно проводить кристаллизацию – выделение примесей в виде выпадающих в осадок кристаллов из насыщенного раствора.
В качестве экстремального метода используется термическое окисление, когда очищаемая вода распыляется и подвергается воздействию высокотемпературных продуктов сгорания топлива. Данный метод используется для нейтрализации высокотоксичных или трудно разлагаемых загрязнителей.